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MODIFIED TABLES FOR THE DESIGN OF OPTIMUM DIPLEXERS 

n        /—       ir.u,.._ 
XV.     VJ.      *CILI uy 

R.   B.   Wilds 

1. ABSTRACT. 

A set of modified tables for the design of 
quasi-complementary Chebyshev filters for 
diplexer use is presented.     Use of the tables 
in conjunction with the straightforward de- 
sign procedure outlined makes it possible to 
design optimum diplexer circuits.    Mathe- 
matical and experimental verification of the 
validity of the modified values is discussed. 

2. INTRODUCTION. 

Diplexers are widely used for splitting a broad frequency band into 
two smaller bands of arbitrary width using selective filters.     The 
design method described herein calls for the use of singly terminated 
low-pass and high-pass filters.    As pointed out by Matthaei , the use 
of singly terminated filters circumvents the problems of modifying 
the diplexed ends of filters designed for resistor terminations at both 
ends.    The compensation or annulling networks used with doubly ter- 
minated filters are not required.    Singly terminated low-pass and 
high-pass filters designed from the Butterworth element values and 
denormalized to the same cut-off frequency are complementary.   This 
is not the case however,   for Chebyshev filters.     Therefore,   tables of 
modified element values for the design of diplexers with quasi- 
complementary Chebyshev filters have been derived.    The validity of 
the modified values has been verified mathematically and experimen- 
tally for a diplexer consisting of 10-element,   0.25-db ripple Chebyshev 
low- and high-pass filters. 

Although this report is concerned only with a single diplexer,   the 
method could be extended to yield a number of contiguous channels to 
form a very broad band multiplexer. 

1.      See list of References in Section 9. 

1 - 
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2- QUASI-COMPLEMENTARY CHEBYSHEV DIPLEXERS. 

Perfect diylexing can be theoretically obtained with filter element 
values corresponding to the tables for singly terminated Butterworth 
filters or maximally flat filters.    A low-pass/high-pass diplexer de- 
signed using these table values yields complementary impedance or 
admittance functions at the common junction at all frequencies in- 
cluding the region of crossover.    For example,   the normalized element 
values in farads and henrys for a three-element maximally flat,   singly 
terminated,   low-pass filter (r = 0) are given by Weinberg*- as 

cr L;       L2, c2       c3, L; 

0.500 1.333 1.500 

The corresponding high-pass filter can be obtained by replacing each 
inductance with a capacitance equal to 1/L farads,   and replacing each 
capacitance with an inductance equal to 1/C henrys.     Using these 
values,   a constant conductance diplexer (Figure  la) or a constant 
resistance diplexer (Figure  lb) can be formed. 

The diplexer of Figure  la has an input admittance at the common 
junction of 1 + j0   at all frequencies,   and the dual circuit of Figure lb 
has an input impedance at the common junction of 1 + j0   at all fre- 
quencies.     Each circuit has the same insertion loss function with the 
3-db crossover point at w =  1 radian. 

Frequently,   it is desirable to form diplexers using Chebyshev or 
equal-ripple element values to take advantage of the greater selectivity 
that can be obtained.    Also,   the element values using Chebyshev tables 
of moderate ripple values can often be realized more easily with prac- 
tical construction techniques.    However,   in the design of diplexers, 
the Chebyshev table values for r = 0 do not produce perfectly com- 
plementary low-pass/high-pass filter pairs as do the table values for 
maximally flat diplexers. 

A shunt-connected diplexer is  shown in Figure  la.    At the crossover 
frequency,   the power should be split equally between the two outputs 
and there should be no reflected power.     To accomplish this,  it is 
obvious that the normalized input conductance of each filter must be 
0. 5 at the common junction and the individual susceptance values of 
both filters must add to zero.    An example is given to illustrate what 
does happen with a diplexer designed from unmodified Chebyshev 
tables.    The admittance characteristics of a filter pair designed from 

L - 
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3. -- Continued. 

the r = 0 tables.   0. 2S-dh rinnle*   and n = 10 reactive elements were 
computed and are shown in Figure 2.    The conductance of each filter 
remains nominally at 1. 0 throughout the pass band up to the crossover 
frequency (u- 1 radian) and then drops virtually to zero in its stop 
band.    The sum of the two conductance values at the common junction 
remains nominally at 1.0 throughout the entire frequency range except 
in the vicinity of crossover.    At « =  1 radian,  the net conductance 
reaches a maximum of about 2.0.    Both filters have reasonably smooth 
susceptance characteristics which rise to a peak at the frequency where 
filter conductance is 0. 5.     The net susceptance at the common junction 
does add to zero at w=  1,  but there is a small amount of residual sus- 
ceptance over the remainder of the frequency range with maxima 
just on each side of crossover.     The theoretical performance of this 
diplexer is not too bad.     The input VSWR remains below 1. 2 over most 
of the band-pass regions and rises to about 2 to 1 at crossover.    This 
indicates a crossover loss of about 3. 5 db to each channel. 

The general shape of the admittance characteristics is typical of 
Chebyshev filter pairs for any ripple value and any number of reactive 
elements.    Of course,  the steepness of the conductance characteristic: 
and the peak value of the susceptance characteristic do change with 
ripple value and number of elements.    It is also interesting to note 
that there is very little ripple in either the conductance or susceptance 
curves,   certainly much less than would be present in a doubly termi- 
nated filter designed from r =  1 tables. 

Closer examination of the admittance characteristics shows that nearly 
perfect diplexer performance can be obtained by modifying the element 
values of the low-pass and high-pass filter to place the 0. 5 conductance 
points of both filters at the crossover frequency.     This amounts to 
shifting the cut-off frequency of the low-pass filter down and the cut-off 
frequency of the high-pass filter up by an appropriate factor.     It be- 
comes apparent that,  when this modification is performed,  the sum of 
the input conductances at the common junction remains nominally at 
1.0 throughout the crossover region.    Also,   the susceptance curves 
are shifted to provide fairly effective cancellation over the entire fre- 
quency range. 

4 - 
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MODIFIED TABLES FOR THE DESIGN OF OPTIMUM DIPLEXERS 

xv.    v-r.     v cm up 

R.   B.   Wilds 

_L ABSTRACT. 

A set of modified tables for the design of 
quasi-complementary Chebyshev filters for 
diplexer use is presented.     Use of the tables 
in conjunction with the straightforward de- 
sign procedure outlined makes it possible to 
design optimum diplexer circuits.     Mathe- 
matical and experimental verification of the 
validity of the modified values is discussed. 

INTRODUCTION. 

Diplexers are widely used for splitting a broad frequency band into 
two smaller bands of arbitrary width using selective filters.     The 
design method described herein calls for the use of singly terminated 
low-pass and high-pass filters.    As pointed out by Matthaei , the use 
of singly terminated filters circumvents the problems of modifying 
the diplexed ends of filters designed for resistor terminations at both 
ends.     The compensation or annulling networks used with doubly ter- 
minated filters are not required.    Singly terminated low-pass and 
high-pass filters designed from the Butterworth element values and 
denormalized to the same cut-off frequency are complementary.   This 
is not the case however,   for Chebyshev filters.     Therefore,   tables of 
modified element values for the design of diplexers with quasi- 
complementary Chebyshev filters have been derived.    The validity of 
the modified values has been verified mathematically and experimen- 
tally for a diplexer consisting of 10-element,   0. 25-db ripple Chebyshev 
low- and high-pass filters. 

Although this report is concerned only with a single diplexer,  the 
method could be extended to yield a number of contiguous channels to 
form a very broad band multiplexer. 

See list of References in Section 9. 
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y. QUASI-COMPLEMENTARY CHEBYSHEV DIPLEXERS. 

Perfect diplexiag can be theoretically obtained with filter element 
values corresponding to the tables for singly terminated Butterworth 
filters or maximally flat filters.    A low-pass/high-pass diplexer de- 
signed using these table values yields complementary impedance or 
admittance functions at the common junction at all frequencies in- 
cluding the region of crossover.     For example,   the normalized element 
values in farads and henrys for a three-element maximally flat,   singly 
terminated,   low-pass filter (r = 0) are given by Weinberg^ as 

cr L;       L2, c2       c3. L; 

0.500 1.333 1.500 

The corresponding high-pass filter can be obtained by replacing each 
inductance with a capacitance equal to 1/L farads,   and replacing each 
capacitance with an inductance equal to 1/C henrys.     Using these 
values,   a constant conductance diplexer (Figure la) or a constant 
resistance diplexer (Figure  lb) can be formed. 

The diplexer of Figure  la has an input admittance at the common 
junction of 1 + j0   at all frequencies,   and the dual circuit of Figure lb 
has an input impedance at the common junction of 1 + j0   at all fre- 
quencies.     Each circuit has the same insertion loss function with the 
3-db crossover point at w =  1 radian. 

Frequently,   it is desirable to form diplexers using Chebyshev or 
equal-ripple element values to take advantage of the greater selectivity 
that can be obtained.    Also,   the element values using Chebyshev tables 
of moderate ripple values can often be realized more easily with prac- 
tical construction techniques.    However,   in the design of diplexers, 
the Chebyshev table values for r = 0 do not produce perfectly com- 
plementary low-pass/high-pass filter pairs as do the table values for 
maximally flat diplexers. 

A shunt-connected diplexer is shown in Figure  la.    At the crossover 
frequency,  the power should be split equally between the two outputs 
and there should be no reflected power.     To accomplish this,   it is 
obvious that the normalized input conductance of each filter must be 
0. 5 at the common junction and the individual susceptance values of 
both filters must add to zero.    An example is given to illustrate what 
does happen with a diplexer designed from unmodified Chebyshev 
tables.    The admittance characteristics of a filter pair designed from 

-  I 
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3. -- Continued. 

the r — 0 tables.   0. 2S-rih rinnle,   and n = 10 reactive elements were 
computed and are shown in Figure 2.    The conductance of each filter 
remains nominally at 1. 0 throughout the pass band up to the crossover 
frequency (w= 1 radian) and then drops virtually to zero in its stop 
band.     The sum of the two conductance values at the common junction 
remains nominally at 1.0 throughout the entire frequency range except 
in the vicinity of crossover.    At w=  1 radian,   the net conductance 
reaches a maximum of about 2.0.    Both filters have reasonably smooth 
susceptance characteristics which rise to a peak at the frequency where 
filter conductance is 0. 5.     The net susceptance at the common junction 
does add to zero at w - 1,   but there is a small amount of residual sus- 
ceptance over the remainder of the frequency range with maxima 
just on each side of crossover.     The theoretical performance of this 
diplexer is not too bad.     The input VSWR remains below 1. 2 over most 
of the band-pass regions and rises to about 2 to 1 at crossover.     This 
indicates a crossover loss of about 3. 5 db to each channel. 

The general shape of the admittance characteristics is typical of 
Chebyshev filter pairs for any ripple value and any number of reactive 
elements.    Of course,   the steepness of the conductance characteristic 
and the peak value of the susceptance characteristic do change with 
ripple value and number of elements.    It is also interesting to note 
that there is very little ripple in either the conductance or susceptance 
curves,   certainly much less than would be present in a doubly termi- 
nated filter designed from r =  1 tables. 

Closer examination of the admittance characteristics shows that nearly 
perfect diplexer performance can be obtained by modifying the element 
values of the low-pass and high-pass filter to place the 0. 5 conductance 
points of both filters at the crossover frequency.     This amounts to 
shifting the cut-off frequency of the low-pass filter down and the cut-off 
frequency of the high-pass filter up by an appropriate factor.    It be- 
comes apparent that,   when this modification is performed,   the sum of 
the input conductances at the common junction remains nominally at 
1.0 throughout the crossover region.    Also,  the susceptance curves 
are shifted to provide fairly effective cancellation over the entire fre- 
quency range. 

4 - 
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3. 1 Modified Chebyshev Tables for Diplexer Design. 

Since the cut-off rate of a filter is a function of both ripple value and 
number of reactive elements,   it follows that a separate modification 
factor must be applied for each ripple value and n value.    Matthaei'1 

has developed the general expression for the normalized input con- 
ductance of singly terminated,   low-pass Chebyshev filters: 

Re Y 
=   (1 +«) 1 + e    cosh      (n cosh 

1 
—- ) 

1 

(1) 

where 

€      = 
,     ... m (antilog  -JQ- ) (2) 

A      is the equal ripple value in db,  n is the number of reactive ele- 
ments,  u,  is the radian cut-off frequency which is equal to 1 in the 
normalized case,   and u   is an arbitrary radian frequency greater than 
1.    For n odd,  the  factor  (1 + e) is set equal to 1. 

To determine the modification factor,  the normalized input conductance 
is set equal to 0. 5 and the expression is rearranged to yield: 

3 db 
u   ,l u"1    ■>/ 1+2«% =    cosh   (—     cosh \l   ),   n 

n V € 
even (3) 

and 

3 db 
cosh   (— 

n 
cosh 

-1 Y j )  ,     n odd. (4) 

For the particular case of n =  10 elements and 0. 25-db ripple 
(« =0.0593),  " 3 db "  1.023.    To obtain the modified low-pass table 
values,   each inductance and capacitance is multiplied by 1.023.   This, 
in effect,   lowers the cut-off frequency of the filter to,— of its 

original value and places the 0. 5 normalized conductance value at the 
crossover frequency of to =  1  radian. 

-  6 - 
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3. 1 Continued. 

To obtain the modified element values for the quasi-complementary 
high-pass filter,   each modified inductance is replaced with a capaci- 
tance equal to 1/L farads,   and each modified capacitance is replaced 
with an inductance equal to 1/C henrys.     The effect of inverting the 
modified low-pass values is to raise the cut-off frequency of the high- 
pass filter to 1. 023 times its original value and to place its 0. 5 nor- 
malized conductance value at the crossover frequency of Us 1 radian. 
Since the low-pass to high-pass transformation procedure is a simple 
inversion process,  tables of modified Chebyshev element values are 
given for the low-pass prototype filters only.    Tables  1 through 4 
present the modified element values for 0. 1-,   0.25-,   0.5-,   andl.0-db 
ripple,   each for three to ten reactive elements. 

3.2 Selectivity Characteristics of Quasi-Complementary Filter 
Pairs. 

If the sum of the conductance at the common junction is equal to 1. 0 
at all frequencies and the net susceptance is zero,  then the fractional 
power transferred to the output port of either filter is equal to its 
respective normalized input conductance.    Therefore,   with the aid of 
Equations (1),   (3),   and (4),  expressions for the stop band insertion 
loss may be written 

IL =  10 log 

n even, 

1 
10   (1 + t) 

1+e   cosh       n cosh 
-1 

w  cos h   —  cosh       \/  
n V     E 

(5) 

2e 

IL = 10 lop 

n odd, 

10 
, 2   I , -1 

1 + «   cosh     I n cosh w    cosh—  cosh 
n 

1V? 
(6) 

where w is an arbitrary radian frequency greater than 1, relative to a 
radian frequency of 1 at the 3-db crossover point. The filter pair pos- 
sesses geometric symmetry. Therefore, the stop-band insertion loss 
of the high-pass filter may also be obtained from Equations (5) and (£) 
by inverting the radian frequency w , since for the high-pass filter the 
stop band will be at radian frequencies less than unity. 

-  7 
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CALCULATED PERFORMANCE OF A DIPLEXER USING 
MODIFIED ELEMENT VALUES. 

To check the validity of the modified values,  the same diplexer de- 
scribed in Section 2 -vith 0. 25-db ripple and n =  10 was designed from 
the modified tables.    Figure 3 shows the normalized element values 
for the diplexer. 

It is seen that the first element in the low-pass filter is a series in- 
ductance so that the input susceptance of the filter in its stop band 
will be small.    Similar reasoning determines a series capacitor for 
the first element in the high-pass filter.    The input admittance of 
both filters was calculated from . 25 uc to 3 wc with an IBM 1620 com- 
puter.    From these admittance values,  the performance of the diplexer 
was computed as to input admittance and power split as functions of 
frequency.    Figure 4 displays the input conductance and susceptance 
for the filter pair in the crossover region.    The normalized total input 
conductance is very near unity at all the calculated frequencies.    Vir- 
tual cancellation of the susceptances at all the calculated frequencies 
was also determined.    Power division (Figure 5) as a function of fre- 
quency shows that a 3-db crossover is theoretically possible. 

-   12 
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5. MEASURED PERFORMANCE. 

A diplexer with a 500-Mc crossover was designed from the normalized 
element values given in Figure 3.    Denormalization as to impedance 
level and operating frequency is accomplished by multiplying every 
resistance in the prototype by R (the impedance level of the network), 

R 1 
every inductance by j- ,  and every capacitance by ——j—5-   .    The 

c c 
desired crossover frequency of the diplexer is f  .     Measured perform- 
ance was not as ideal as that predicted mathematically either as to 
input VSWR or insertion loss.    Tht VSWR characteristic shown in 
Figure 6 exhibits rather prominent variations around the crossover 
frequency,   probably due to the steep slopes of the  susceptances of 
both filters in this region and the inability to achieve complete can- 
cellation.    Only slight departures in realization from the correct 
values in any of the 20 elements making up the diplexer will degrade 
the performance from theoretical.    A 3-db crossover was not achieved 
(Figure 7).    However,   4-db crossover values were readily obtained. 
With fewer elements,   performance closer to theoretical is undoubtedly 
obtainable.    As the number of elements is increased,   the crossover 
characteristics of the filters become steeper,   making realization for 
ideal performance more difficult.    The same thing is true for increasing 
the ripple value of the filters. 

-   16 - 
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6_ REALIZATION. 

Coaxial split-block construction (Figure 8) was used for the physical 
realization of the 500-Mc diplexer.    The inductances for both low- 
and high-pass filters were made with 10-mil diameter silver wire 
wound on a 4-40 nylon threaded rod.    The series capacitors for the 
high-pass filter were small discs of double copper clad teflon fiber 
glass laminate (0.020" dielectric thickness).    These small series 
Capacitors were soldered between short segments of the center con- 
ductor using indium solder.    The nylon rod was threaded into the short 
line segments as supports for the shunt inductances.    The shunt capac- 
itors in the low-pass structure were of the widely used coaxial type 
with teflon dielectric.    The centers of these capacitors were threaded 
for the nylon rod which formed the support for the series inductances, 

-   19 - 
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CONCLUSIONS. 

The modified tables presented here should be useful in the design of 
diplexers where the sharp skirt selectivity of Chebyshev filters is 
required.    It has been the authors' experience that the practical real- 
ization of diplexer circuits is facilitated by a design which is optimum 
rather than approximate.    The calculated and experimental results 
given here are for only a single diplexer and one type of configuration. 
The design procedure,  however,  is general and can be extended to 
yield circuits consisting of a number of channels.    There is no known 
restriction on the type of physical configuration.    Matched input di- 
plexers should find wide usage in band splitting,   harmonic suppression, 
frequency multipliers,   and solid-state circuits. 

- 21 - 
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